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Abstract—Human pose estimation via motion tracking systems
can be considered as a regression problem within a discriminative
framework. It is always a challenging task to model the mapping
from observation space to state space because of the high-dimen-
sional characteristic in the multimodal conditional distribution. In
order to build the mapping, existing techniques usually involve a
large set of training samples in the learning process which are lim-
ited in their capability to deal with multimodality. We propose, in
this work, a novel online sparse Gaussian Process (GP) regression
model to recover 3-D human motion in monocular videos. Partic-
ularly, we investigate the fact that for a given test input, its output
is mainly determined by the training samples potentially residing
in its local neighborhood and defined in the unified input-output
space. This leads to a local mixture GP experts system composed of
different local GP experts, each of which dominates a mapping be-
havior with the specific covariance function adapting to a local re-
gion. To handle the multimodality, we combine both temporal and
spatial information therefore to obtain two categories of local ex-
perts. The temporal and spatial experts are integrated into a seam-
less hybrid system, which is automatically self-initialized and ro-
bust for visual tracking of nonlinear human motion. Learning and
inference are extremely efficient as all the local experts are defined
online within very small neighborhoods. Extensive experiments on
two real-world databases, HumanEva and PEAR, demonstrate the
effectiveness of our proposed model, which significantly improve
the performance of existing models.

Index Terms—Gaussian process regression, human motion
tracking, local experts model, pose estimation, temporal-spatial
model.

I. INTRODUCTION

V ISION BASED human motion tracking has been a fun-
damental open problem, with pervasive real-world appli-

cations [1], such as surveillance, rehabilitation, diagnostics, and
human computer interaction. Among the large amount of studies
in this field, the discriminative approach [2] has been prevalent
due to its feasibility of fast inference in real-world scenarios and
flexibility of adapting to different learning methods. The typical
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objective of these approaches [3]–[8] is to model the direct map-
ping from visual observations to well-defined human pose con-
figurations. The wide spectrum of such methods ranges from
nearest-neighbor retrieval [9], [10] and manifold learning [4]
to regression [7], [11] and probabilistic mixture of predictors
[2], [5].

Suffering from the intrinsic visual-to-pose ambiguity, how-
ever, all the discriminative approaches have the same difficulty
of effectively modelling multimodal conditional distributions
with small-size training data in a high-dimensional space. The
category of model mixtures is the most common technique to
handle multimodality. The conditional Bayesian Mixture of Ex-
perts (BME) model [2], [5] has been effective in representing the
multimodal visual-to-pose mapping, by introducing the input
sensitive gate function. However, most parametric models are
usually not robust in dealing with high-dimensional data. In ad-
dition, the BME model may degrade on small-size training data
since its performance heavily depends on the data distribution
in ambiguous regions.

Gaussian Process (GP) [12] and its variants, within both dis-
criminative [7], [8], [13] and generative [14] frameworks, have
been applied to human pose/motion estimation in a few recent
works. Particularly, GP regression model has proven to be a
powerful approach. It defines a prior probability distribution
over infinite function spaces, which leads to a nonlinear prob-
abilistic regression framework working along with the kernel-
ized covariance function. The flexibilities in kernel selection
and non-parametric nature of GP model are advantageous to
find efficient solutions of pose/motion estimation on small-scale
databases [7], [8], [14]. Within the discriminative framework,
human motion estimation is mainly built on the basis of GP re-
gression. However, the full GP regression suffers from two in-
evitable limitations: 1) relatively expensive computational cost
and 2) insufficient capability to handle multimodality [15].

The sparse approximation of full GP [12], [16] has been in-
vestigated to relieve the computational difficulty, which typi-
cally only use a subset of training inputs [17] or a set of inducing
variables [18] to approximate the covariance matrix. Without
losing any key characteristics, such models still work within the
global voting framework even if the computational expenses can
be relatively reduced through such approximations. Therefore,
for each test input, all the training samples are involved in the
inference process. It might be lacking of effective mechanisms
to avoid the averaging effect.

Mixture of Gaussian process experts [19]–[21] is an alterna-
tive approach to mitigate the two limitations. As same as mix-
ture of experts architecture [22], the input space of this model
is divided into different regions by a gating network, each of
which is dominated by a specific GP expert. In the model, the
cubic computing cost on the entire dataset is reduced to that on
only part of the data. At the same time, the covariance functions
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Fig. 1. Graphical model description of our proposed framework. (a) The dis-
criminative framework in the temporal chain. � represents input and � output.
Shaded nodes indicate the observation and unshaded nodes indicate modeled
variables. (b) Detailed description of the graphical model of one time node in
the temporal chain. The rectangle enclosed blocks in the left and right side rep-
resent temporal and spatial experts respectively. � and � are the learned hyper-
parameters.

are localized to adapt to different regions accordingly. However,
learning the mixture GP experts is usually intimately coupled
with the determining of gating network. Training the gating net-
work itself is often a nontrivial problem.

We propose a novel mixtures of local GP experts model
in this work, which incorporates both temporal and spatial
information. Theoretically, it is insufficient to effectively
handle multimodality only by spatial information since the
problem of monocular human motion estimation itself is
ill-posed. Introducing temporal information into the model
is reasonably necessary. But existing discriminative methods
are short of temporal estimation framework. One exception
is the parametric model proposed in [2], in which temporal
smoothness constraints are added into the BME model. It is
also worth noting that in [23], the Gaussian Process Dynamical
Model (GPDM) [24] is used to model the dynamics of human
motions. As the original GPDM [24] is designed to find a
low-dimensional latent space with associated dynamics, it is
introduced to capture the motion priors in the latent state space
by [23]. Although both our proposed method and the GPDM
based method utilize temporal information within Gaussian
Process context, actually they work in different frameworks.
In [23], after learning the motion prior in the state space, the
pose estimation process falls into generative framework by
optimizing a likelihood function. However our model is in a
regression framework, which is discriminative. In addition, our
model is local but GPDM is global.

Inspired by the existing work on human pose inference by
sparse GP regression [13], our model, as a discriminative ap-
proach, is non-parametric and temporally-spatially integrated.
In the existing model, GP experts are trained offline and the local
GP regressors are defined online for each test sample. Derived
from the test sample neighborhood in the appearance space,
each local GP is defined to be consistent in the pose space. This
model can avoid the tedious efforts introduced by the mixture
of GP experts in computing the gating network. By general-
izing the localization strategy of [13], we propose a local GP
experts model. The graphical model description of our approach
is shown in Fig. 1. In summary, the main contributions of this
paper are in four aspects:

1) We propose to define the local GP experts in the unified
input-output space, therefore each GP expert is composed
of samples that are localized in both input and output
spaces. This strategy is different from that proposed in
[13], in which the neighborhood is defined separately in
input and output spaces. Such scheme is prone to fail in
dealing with more-to-one mappings because the neigh-
borhood relationship in the output space may be changed

in the input space. In comparison, our model can flexibly
handle the two-way multimodality.

2) We build local GP experts model in the temporal chain
therefore get the temporal experts. In the unified space,
we integrate the temporal and spatial experts into a hy-
brid system to make prediction and handle multimodality.
Basically, human motion has its dynamic behavior. In the
state space, the configuration of human pose moves along
a special manifold [4]. Using temporal information can al-
leviate the multimodality and explore the underlying con-
text of the output space. In our model, the temporal experts
are trained offline, so once the temporal information is un-
available midway, we can easily switch to spatial local GP
experts alone for the prediction.

3) We collect the new Pose Estimation and Action Recogni-
tion (PEAR) database to facilitate the research on human
pose estimation, motion tracking and action recognition.

4) We evaluate the proposed Temporal-Spatial Local (TSL)
GP model on two real databases, HumanEva [25] and
PEAR, and achieve significant improvements against both
the full GP model and the local sparse GP model.

This work is an extension of our previous research in [15].
Comparing to [15], this work involves more technical details
and experiments conducted on both HumanEva and PEAR
databases. We also add more experimental studies on the
selection of algorithm parameters. The structure of the paper
is organized as follows. In Section II, we introduce the local
GP experts model and its implementation. In Section III, we
describe how the temporal information is integrated into the
local GP model. We report the experiments on both HumanEva
and PEAR databases in Section IV. The results of extensive
comparative experiments are analyzed and discussed. Finally,
we conclude the proposed work and envision future research
directions in Section V.

II. LOCAL GAUSSIAN PROCESS EXPERTS MODEL

In this section, we present the sparse strategy of GP regres-
sion in the unified input-output space, which leads to our pro-
posed local GP experts model. We review the GP regression
in Section II-A and then present the detailed algorithm for our
model in Section II-B.

A. Gaussian Process Regression Revisited

Gaussian process is the generalization of Gaussian distribu-
tions defined over infinite index sets [12]. Suppose we have a
training dataset , composed of
inputs and noisy outputs . We consider a regression model
defined in terms of the function so that

(1)

where is a random noise variable and the hy-
perparameter represents the precision of the noise. From the
Gaussian assumption of prior distribution over functions ,
the joint distribution of outputs condi-
tioned on input values is given by

(2)
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where , and the covariance matrix
has elements

(3)
where is the Kronecker delta function. In this paper, we use
a kernel function which is the sum of an isotropic exponen-
tial covariance function, a noise term and a bias term, all with
hyperparameters, . During the training, the hyperparameters
are learnt by minimizing

(4)

where is the dimension of the output space. For a new
test input , the conditional distribution,

, is a Gaussian distribution with mean and covariance
given by

(5)

(6)

where ’s are the indexes of the training inputs, is
the covariance matrix with elements given by (3) for

, vector is the cross-covariance of the test
input and the training inputs, and scalar

is the covariance of the test input.
Note that the mean (5) of the prediction distribution can be

written as a function of , in the form

(7)

where is the th component of . In this view,
is determined by the linear combination of kernel functions,
with each one centered on a training point. From another view-
point, the mean prediction (5) is actually a weighted voting from

training outputs

(8)

where is the th component of . With this insight,
we can view the GP regression as a voting process, where each
training output has a weighted vote to determine what the test
output should be.

In the full GP regression model, all the training data are in-
volved in the voting process for determining the corresponding
outputs of the test inputs regardless of the data distribution in
the local domain. This global voting system is computationally
prohibitive and can lead to biased predictions when the con-
ditional distribution is multimodal. We next introduce a novel
local voting mechanism to not only localize the full GP model
to adapt the multimodality effectively, but also reduce the com-
putational cost for feasible online inference.

B. Local Mixture of GP Experts

In order to reduce the computing cost and handle multi-
modality, we have to sparsify the full GP regression model.
Current GP sparse techniques [12], [16] mainly focus on
globally sparsifying the full training dataset based on some
selection criteria such as online learning [26], greedy poste-
rior maximization [27], maximum information gain [28], and
matching pursuit [29]. By using this kind of methods, the com-
putational complexity of full GP, , is reduced to
or , where and are the sizes of the full training

dataset and the selected subset respectively. However, for very
large database, the reduction is not enough. Moreover, these
ideas still work within the global voting framework. It means
that for every test input, no matter which local distribution
mode they belong to, the selection of the training samples and
covariance function are global.

As a non-parametric model, the performance of GP regres-
sion is closely related to the kernel function and the examples
involved in the computation of covariance matrix . For a spe-
cial test input, the training samples within its neighborhood usu-
ally have more impacts on the prediction than those far from it.
For example, when using monotonically decreasing covariance
functions, the covariance matrix is sparse; is very small for
all the entries where the distance between and is large.
As for the voting, the weights of the local voters are bigger than
others (see (8)). In the GP model, kernel function provides a
metric to measure the similarity between the inputs. Ideally, this
metric should be adjusted dynamically to adapt to different local
regions.

We develop the local mixture of GP experts through the above
motivation. Similar to the model in [13], for a given test input,
we select different local GP experts in its neighborhood. The
training samples of each expert are also selected locally. These
local experts build up a local mixture GP experts system to make
the prediction. Therefore, our model formulates the mean pre-
diction for a given test input by

(9)

where is the number of local experts, the size of each expert,
the index set of samples for the th expert, the prediction

weight of the th expert, the th training output belonging
to the th expert and is its weight. Both and are param-
eters of our model, and practically small values are sufficient to
generate satisfactory predictions.

Definition of Local Neighborhood: Different from the local-
ization strategy in [13], our model defines the neighborhood in
the input-output unified space , where the data points are the
concatenation of input and output vectors. The advantages of
our strategy are twofold [15]:

• The neighborhood relationship is closer to the real distribu-
tion in than in the single input and output space. For ex-
ample in pose estimation, two image feature points which
are very similar in the feature space might be quite different
in the pose space, and vice versa. In , this kind of ambi-
guity can be avoided to a large extent.

• Our strategy can deal with two-way multimodal distri-
butions. For the more-to-one (input-to-output) mapping,
neighborhood relationship defined in output space may
not be kept. The data points can be scattered in the input
space by using the neighborhood definition in the output
space. But in , this situation can be avoided.

In implementation, the unified data space is divided into
different local regions with a clustering algorithm. Each region
is dominated by a local GP expert trained offline. Given a test
input, starting from its neighborhood in the input space, we find
its local neighbors in to build the local mixture of GP experts
model.

1) Determination of Prediction Weights: In (9), the predic-
tion weights of the local experts are determined by the prob-
abilities of the local experts given a test input . The mean
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prediction thereby can be expressed as
, where is the local expert and the

local prediction [30]. According to the Bayesian theorem and
by taking as the distance measure of to the
center of the local expert , we have

(10)

where is calculated by the kernel function defined in (3).
Therefore, we can get the mean prediction

(11)

Actually the prediction weight can be in-
terpreted as a normalized distance from to the center of
the local expert. The algorithm is summarized in Algorithm 1,
where the dataset in is represented as with

. The function finds nearest
neighbors of in . The function performs
k-means clustering on dataset and returns the centers
and clusters .

Algorithm 1 Local mixture of GP experts: learning and
inference

1: OFFLINE: Training of the Local Experts

2: : number of local GP experts

3: for do

4:

5: end for

6: ONLINE: Inference of test point

7: : number of experts, : size of each expert

8:

9: for do

10:

11:

12:

13:

14: end for

15:

In the framework of our local GP model, a full GP with sta-
tionary covariance function is approximated by the local GP
experts centered at the neighbors of the given test point. It re-
duces considerably the computational cost and allows learning
and inference with extremely large database. However, the ca-
pability of dealing with multimodality in this way depends on
the distribution of training data in the multimodal region. If

different modes distribute equally in the region, the prediction
may also suffer from the averaging effect like full GP. There-
fore, theoretically, it is insufficient to handle multimodality ac-
curately by only using the spatial information (See the experi-
ments in Section IV). We next present a more sophisticated mix-
ture of local GP experts by incorporating temporal experts into
the model.

III. TEMPORAL-SPATIAL LOCAL GP EXPERTS

Based on the spatial experts, we introduce the temporal ex-
perts as an extension to handle multimodality more effectively.
In the temporal-spatial combined GP experts model, the spatial
local experts learn the relationship between the input space and
output space, while the temporal local experts explore the under-
lying context of the output space. In the scenario of sequential
data, by adding the temporal constraint, the regression models
can be formulated as

(12)

(13)

where is the temporal tag, and
are noise processes. We use the first-order

Markov dynamical model to represent the dependence in the
output space. For (13), considering dynamic mapping on dataset

in the output space, the joint distribution
of is given by

(14)

where and . With a Gaussian
prior over , we can obtain the similar log likelihood function
as (4) and learn the hyperparameters for the temporal model.
Considering the nonlinear dynamical nature of human motion,
we use an RBF plus linear kernel

(15)
We use the similar localization strategy described in Algo-

rithm 1 to build the local temporal experts model. Once the local
temporal experts generate the prediction , we proceed to make
the prediction supported by the local spatial experts in the uni-
fied space . Therefore, this process is described by

(16)

A. Algorithm Description

As described in Algorithm 2, we build the temporal-spatial
combined local GP model as follows. Given the training dataset

and , we first learn
a set of hyperparameters for the local spatial GP experts
following the process described in the offline part of Algorithm
1. Then, the local temporal model is built up by the same way
using the training data and

. From the final estimation result at time in-
stant , one can obtain the prediction under the process
of local temporal experts model. Finally, at the time instant ,
we import and into our temporal-spatial combined local
experts model to get the final prediction .
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TABLE I
COMPUTATIONAL COMPLEXITY. BOTH OF OUR LOCAL MODELS ARE LINEAR IN � FOR BOTH LEARNING AND INFERENCE,

WHERE � IS THE DIMENSION OF THE DATA POINTS. IN OUR EXPERIMENTS, � , �, � � �

Algorithm 2 Online inference with temporal-spatial local GP
experts

Require , : the output at last time instant

1: (see Algorithm
1)

2: COMBINATION of two classes of local experts

3: : number of spatial experts

: number of temporal experts

: size of each expert

4: ;

5: ;

6: ;

7: ONLINE inference

8: : number of all experts

9: for do

10:

11:

12:

13:

14: end for

15:

It is worth pointing out that the our framework provides
the mechanism to flexibly handle temporal discontinuity. It
can switch off the local temporal experts once the temporal
information is unavailable midway. Like most other temporal
prediction approaches, in our model, there still exists the initial-
ization problem. Here, the estimation at the first time instant
is given by the local spatial experts alone. Fortunately, in many
practical applications, multimodal is not everywhere in the data
space. If the regression process starts from the unimodal region,
the results will be satisfactory enough.

B. Computational Complexity

Table I shows the comparisons of computational complexity
between our models and the full GP method. The computational
complexity of conventional full GP is cubic of the number of
involved samples. When the size of database grows to a large
scale, the computational cost will become prohibitively high.

In contrast, for both learning and inference, our local models
are linear in stemming from the operators of finding nearest
neighbors and k-means clustering , where

is the total number of examples and is the dimension of
the data point. In particular, the computational complexity of
learning in both of our models is the time of learning the local
experts with size , plus the time of k-means clustering

for building the local experts model. The computation
cost is doubled in the TSL-GP model because both spatial and
temporal models need to be trained at the same time. As for the
inference, both local models have the same computational com-
plexity for computing the local GP, , and finding the
neighbors, . Note that the complexity of inverting the
local GP is not a function of the number of examples, since the
local GP experts are of fixed size. When , the computa-
tional cost is significantly reduced. Moreover, the complexity of
our model is much smaller than that of full GP since in general

is a small value comparing to . It is computational benefi-
cial in dealing with very large size databases.

IV. EXPERIMENTS

In this section, we first validate our models on illustrative data
generated from both multimodal function and unimodal func-
tion. We provide the reasoning of our models by visualizing the
proof-of-concept results. We then conduct the experiments on
two real-world datasets. The first one is the HumanEva-I data-
base for the evaluation of human pose estimation collected at
Brown University [25]. The second dataset we call PEAR (ab-
breviate of Pose Estimation and Action Recognition) is our re-
cently released dataset for the pose and action related research
collected at Shanghai Jiao Tong University. The detailed de-
scription of the novel dataset is presented in Section IV-C.

A. Regression on Multimodal and Unimodal Functions

We simulate two sets of toy data in this experiment for proof
of concept [15]. The caption of Fig. 2 describes the details of
the data. The regression results shown in Fig. 2 contain compar-
isons of full GP, local sparse (LS) GP (Algorithm 1) and Tem-
poral-Spatial Local (TSL) GP (Algorithm 2). It can be seen that
in the first row of Fig. 2, for the multimodal function, the full GP
can only globally average the outputs of different modes. The
local sparse GP, Fig. 2(b), can partly handle the multimodality
and avoid the global averaging effect. However the prediction
is still not sufficiently smooth. The outputs frequently skip be-
tween different modes in the multimodal regions. This problem
can be solved in the TSL GP model due to the utilization of tem-
poral information. Note that in Fig. 2(c), the skips are eliminated
and the prediction is smooth. Another dataset provides a uni-
modal input-to-output mapping. As illustrated in Fig. 2(d–f), the
full GP gives ideal regression results because the global voting
mechanism can deal with the unimodal mapping very well. The
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Fig. 2. Model comparisons between full GP, Local Sparse GP, and TSL GP on two sets of illustrative data [15]. The first dataset (first row) consists of about
200 training pairs of ��� ��, where � generated uniformly in (0,1) and evaluated as � � � � ��� ��	�
��� � �, with � drawn from a zero mean Gaussian with
standard deviation 0.05. Note here ������ is multimodal. Test points �� � 
��� are sampled uniformly from (0,1). The second dataset (second row) is obtained
by sampling �� � ���� a GP with covariance matrix obtained from an RBF. About 200 test inputs are sampled uniformly in ����
� ��
�. The regression results
are shown in: (a), (d) Full GP; (b), (e) Local Sparse GP; (c), (f) TSL GP.

TABLE II
DESCRIPTION OF THE HUMANEVA DATASET SPECIFIED BY FRAME NUMBERS

local sparse GP also gives good results although there still exist
some jitters. The TSL GP shows smoother prediction results
than the local sparse GP model. In sum, the proposed TSL GP
algorithm shows the most accurate and reliable performance in
both multimodal and unimodal scenarios.

B. On the HumanEva Dataset

We evaluate our models on the HumanEva dataset [25].
The database provides synchronized video and motion capture
streams. The frame rate of the video stream is 60 Hz. It con-
tains multiple subjects performing a set of predefined actions
with repetitions. The database was originally partitioned into
training, validation, and testing subsets. We use sequences in
the original training subset for training and original validation
subset for testing. Table II shows the description of the Hu-
manEva dataset we used in the experiments specified by frame
numbers. As only consistent frames are considered in each
sequence, there are in total 2530 frames for walking motion,
1847 frames for jog motion, and 1192 frames for box motion
are used.

The pose is represented by 3-D joint centers, which are pro-
cessed by subtracting root joint location. The “torsoDistal” is
taken as the root joint. There are in total 15 joint points and
end points of the limbs. Therefore, the output pose dimension
is 45 ( , , coordinates). As for the image representation,
we use three different types of features: Histogram of Oriented
Gradients (HOG) [31], Local Binary Pattern (LBP) [32] and
Histogram of SIFT [33]. Among the three features, Histogram
of SIFT is extracted using bag-of-words model [34]. The local
patches are centered on the sampled points on the silhouette and
edges. We obtain the human silhouette by simple background
subtraction. The number of sampled points in each frame is 400
and the size of code book is set to 300. LBP and HOG features
are extracted on the regular overlapped grid patches per image.
The dimension of the three features is reduced by PCA to keep
at least 95% variance. All the images used in the experiments
are captured by the C1 camera.

To evaluate the performance quantitatively, we make use of
the metric proposed by [25], in which pose error is computed as
an average distance between a set of 15 pose points. Therefore,
the 3-D error (mm) can intuitively measures the distance be-
tween ground truth and estimated pose. On the sequence level,
we compute the error by averaging all the pose errors over the
whole sequence.

In the experiments, we evaluate the performance of five
models, Nearest Neighbor (NN), full GP, LS-GP(U) defined
in the unified space, LS-GP(S) defined in separate space (pro-
posed in [13]), and TSL-GP, respectively. Table III shows the
results of performance evaluation on the five models. It shows a
big picture of the whole evaluation on all the three subjects and
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TABLE III
PERFORMANCE EVALUATION ON THE HUMANEVA DATABASE, FOR THE FIVE MODELS USING HOG FEATURE EXTRACTED FROM C1 CAMERA.

AVERAGE ERROR AND STANDARD DEVIATION (MM) OF THREE ACTIONS: WALKING, JOG AND BOX PERFORMED BY S1, S2, S3 ARE REPORTED.
THE TRAINING SEQUENCE AND TEST SEQUENCE COME FROM SEPARATE TRIALS

Fig. 3. Performance comparisons between three features, HOG, LBP and
Histo-SIFT on three models.

their three actions recorded in the HumanEva database. Average
error and standard deviation are reported. It is obvious that
the TSL-GP model outperforms other models with significant
improvements. The results align well with the conclusion from
the previous section of proof-of-concept experiment, which
suggests the introduction of temporal experts can effectively
improve the performance of the prediction. Both LS-GP(U)
and LS-GP(S) models have better performance than full GP
although there are similar performances in some sequences.
We also find that in the unified space, the local GP achieves
some performance improvement although it is not significantly
distinct. NN presents average performance comparing to the
other four models, but in several sequences it is even better than
full GP. The feature reported here is only HOG and the other
two features, LBP and Histo-SIFT, show similar performance
variations on the five models. Fig. 3 shows the performance
comparisons between the three features on full GP, LS-GP(U)
and TSL-GP model respectively. The error is averaged over all
the sequences. Among the three features, HOG achieves the
best performance.

In all the experiments, we take the values of , , in the
Algorithm 1 and 2 as 50, 10, 25, respectively. In the TSL-GP
model, the number of spatial experts and temporal experts is set
as the same value 10. Actually, the values are chosen experimen-
tally and are data dependent. According to the size of our dataset
and considering the computational cost, we set the value of
to 50. We study the impacts of the number of local experts and
the size of each expert on final performance. Fig. 4 shows the
results. We find that for the local models, relative small number
of experts defined in close neighborhood can provide satisfac-
tory results.

In Fig. 5, the estimation results and ground truth represented
by joint angles over the whole sequence of walking and jog ac-

TABLE IV
CONFIGURATION OF THE PEAR DATABASE SPECIFIED BY

FRAME NUMBERS IN EACH SEPARATE SUBSET

tions are plotted. We compare the results of full GP and TSL-GP.
It can be observed that the curves of the TSL-GP model are
more smooth and close to the ground truth than the full GP
model. Fig. 6 shows some sample frames together with the esti-
mated pose and ground truth pose represented as the outline of
a cylinder based human model superimposed onto the original
images. C1, C2, and C3 cameras are used to show the estimated
pose for the overall 3-D visualization.

As far as the computational cost is concerned, after the com-
pletion of training, the inference is effective with 2–6 frames per
second, using unoptimized Matlab code.

C. On the PEAR Dataset

1) Dataset Description: The Pose Estimation and Action
Recognition (PEAR) database is originally designed to facilitate
the research on human pose estimation and action recognition.
While the research on human motion analysis has been thriving
in recent two decades, few benchmark datasets with synchro-
nized video and motion capture data are available for 3-D pose
estimation. Such dataset is important for the public evaluation
of the state-of-the-art approaches. HumanEva database provides
a good choice toward this aim. PEAR is another choice which
is different from HumanEva in actions, subjects, camera setup,
background and so forth.

The PEAR dataset is collected at a studio of Shanghai Jiao
Tong University. There are 16 color cameras for video capture
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Fig. 4. Impacts of the number of experts �� � (a) and the size of each local expert ��� (b) on the performance. Relative small values of both � and � can provide
satisfactory results.

Fig. 5. Curve comparisons of joint angles: ground truth, estimations with TSL-GP and Full GP regression. (a) Left shoulder (�-axis) of subject S2 in walking
action. (b) Right hip (�-axis) of subject S3 in jog action.

Fig. 6. Sample 3-D pose estimation results. The first column shows the provided ground truth projected onto camera C1. The other three columns show the
estimated pose projected onto C1, C2, and C3 cameras, respectively. Each row corresponds to a frame.

and 12 cameras for motion capture setting up at different loca-
tions around the main area. The database consists of five sub-
jects performing six predefined actions three times with both
video and motion capture data in all trials. The data therefore
are divided into three subsets for training, validating and testing
respectively. The predefined actions include walk, jog, jump,
skip, wave and stretch. In addition, a complex action of tradi-
tional Chinese dancing action is also available. The frame rates
of video system and motion capture system are 25 Hz and 50 Hz,
respectively. The synchronization between video and motion
capture stream mainly relies on the hardware, but we have made

a further refinement on the results. Since the number of cameras
is up to 16, it is sufficient for voxel based pose reconstruction.
The configuration of PEAR database is described in Table IV.
Some sample images with different subjects performing dif-
ferent actions are shown in Fig. 7.

2) Performance Evaluation: We report the performance on
PEAR dataset with the similar features and models evaluated on
the HumanEva database. The camera used in the experiments is
C1. In the feature level evaluations, HOG feature still outper-
forms the other two features for all models, so we use the exper-
imental results from HOG feature hereafter.
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Fig. 7. Sample images in the PEAR database. The actions are jog, jump, wave, skip, stretch and walk respectively from left to right.

TABLE V
PERFORMANCE EVALUATION ON THE PEAR DATABASE. AVERAGE ERROR AND STANDARD DEVIATION (MM) OF THREE ACTIONS: WALK, JOG AND JUMP

PERFORMED BY S1, S2, S3 ARE REPORTED. THE PERFORMANCES ARE EVALUATED ON FIVE MODELS USING HOG FEATURE EXTRACTED FROM C1 CAMERA

For local GP models, we first study the impacts of the number
of experts and the size of each expert on the performance. The
results are shown in Fig. 8. It can be seen that when the size of
each expert is fixed, the performance improves with the increase
of the number of experts. But the improvements are insignificant
when the number increases to 7. It is the similar phenomenon
when changing the size of each expert. Therefore, we empiri-
cally set the values of and in Algorithm 1 and 2 as 10 and 25,
respectively. The detailed experimental results are reported in
Table V. The mean errors and standard derivation for three sub-
jects performing three different actions, walk, jog and jump, are
listed respectively. To measure the error bound, we compute the
“quasi error Lower Bound (LB)” of one sequence by computing
the distance between each test sample and its nearest neighbor
in the training sequence and then averaging the distances over
the whole sequence. In fact this is not a strict lower bound but a
reasonable reference for the evaluation. From the table we can
see that the TSL-GP model again shows advantages. However,
the mean errors are much larger than that on the HumanEva.
One major reason for this phenomenon is the difference of frame
rates between the two databases. The frame rate of PEAR data-
base is 25, so the mean error between neighbor samples is larger
than that on the HumanEva.

In Fig. 9, we show some sample results of pose estimation on
the PEAR database. For 3-D visualization, the estimated pose
are projected onto four different cameras with calibrated camera
parameters.

V. CONCLUSION

We have presented a novel temporal-spatial combined local
GP experts model for efficient estimation of 3-D human pose

Fig. 8. 3-D bar visualization of the impacts of the number of experts and the
size of each expert on the performance.

from monocular images. Our model is essentially a type of mix-
ture of GP experts in which we incorporate both spatial and
temporal information into a seamless system to handle multi-
modality. The local experts are trained in the local neighbor-
hood. Different from previous work, the neighborhood relation-
ship is defined in the unified input-output space. Therefore, we
can flexibly handle two-way multimodality. Learning and in-
ference of this model are extremely efficient because both spa-
tial and temporal local experts are defined online within very
small neighborhoods. As an extension of our previous research
in [15], extensive comparative experiments on the real-world
HumanEva database and PEAR database have validated the ef-
ficacy of the proposed model by achieving accurate human mo-
tion tracking results. As a generalized model, its adaption to
other scenarios is feasible and straightforward. In the future
work, we will explore the automatic switch mechanism to deal
with the large temporal jump and discontinuity.
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Fig. 9. Sample 3-D pose estimation results. The first and second columns in each action subfigure correspond to the ground truth pose and the estimated pose
projected back onto C1 camera. Other three columns correspond to another three cameras. Each row corresponds to a frame.
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